The Karush-Kuhn-Tucker (KKT) conditions

In this section, we will give a set of sufficient (and at most times nec-
essary) conditions for a &* to be the solution of a given convex opti-
mization problem. These are called the Karush-Kuhn-Tucker (KKT)
conditions, and they play a fundamental role in both the theory and
practice of convex optimization. We have derived these conditions
(and have shown that they we both necessary and sufficient) in some
special cases in the previous notes

We will start here by considering a general convex program with in-
equality constraints only. This is just to make the exposition easier
— after we have this established, we will show how to include equality
constraints (which must always be affine in convex programming). A
great source for the material in this section is | , Chap. 10].

Everywhere in this section, the functionals fo(), fi(x), ..., fu(x),
fm i RY — R, are convex and differentiable.

1

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 9:52, February 22, 2017



KKT (inequality only)
The KKT conditions for the convex program

minimize fy(x) subject to fi(x) <

0
fo®) <0

A

inx e RY and A € RM are

fulx) <0, m=1,..., M, (K1)

>0, (K2)

Mfml@) =0, m=1,..., M, (K3)

V@) + ) AV finlx) =0, (K4)

We start by establishing that these are sufficient conditions for a
minimizer.

If the KKT conditions hold for * and some \* € RM . then o* is
a solution to the program (1).

Below, we denote the feasible set as
C={xecR" : f.(2)<0, m=1,...,M}.
It should be clear that the convexity of the f,, implies the convexity'

IThe f,, are convex functions, so their sublevel sets are convex sets, and C
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of C. The sufficiency proof simply relies on the convexity of C, the
convexity of fy, and the concept of a descent/ascent direction (see
the previous notes).

Suppose x*, A* obey the KKT conditions. The first thing to note is
that if
)\1:)\2:”':>\M:O,

then (K4) implies that
Vf(x") =0,

and hence x* is a global min, as by the convexity of fj,
fol) = fol®") + (& — 2", V fo(x")) = f(x7),

for all & € C.

Now suppose that R > 0 entries of A* are positive — without loss
of generality, we will take these to be the first R,

Ar>0, \;>0, -+, Ap>0, Appy =0, --- A, =0.
We can rewrite (K4) as
Vi) + NV fi(x®) + - + AV fr(z®) =0, (2)
and note that by (K3),
filx*)=0,..., fr(x*) =0.

Consider any « € C, x # x*. As C is convex, every point in between
x* and & must also be in C, meaning

fonl@*+0(x —x") <0= f,(x*), m=1,...,R,

is an intersection of sublevel sets.
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for all 0 < 6 < 1. This means that £ — 2* cannot be an ascent
direction, and so

(x —x*, Vf,.(x) <0, m=1,...,R.
It is clear, then, that
(x —x*, Vfo(z*)) >0,

as otherwise there is no way (2) can hold with positive \,,. Along
with the convexity of f,, this means that

folx) = fol@®) + (x — 2", Vf(x7)) = f(x).

Since this holds for all € C, * is a minimizer.

Necessity

To establish the necessity of the KK'T conditions, we need one piece
of mathematical technology that we have not been exposed to yet.
The Farkas lemma is a fundamental result in convex analysis; we
will prove it in the Technical Details section.

Farkas Lemma:
Let A be an M x N matrix and b € R*. The exactly one of the
following two things is true:

1. there exists & > 0 such that Ax = b;
2. there exists A € RM such that

A'X <0, and (b,A) > 0.
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With this in place, we can give two different situations under which
KKT is necessary. These are by no means the only situations for
which this is true, but these two cover a high percentage of the cases
encountered in practice.

Suppose x* is a solution to a convex program with affine inequality
constraints:

minimize fy(x) subject to Az <b.

reRN

Then there exists a A* such that x*, X\* obey the KKT conditions.

In this case, the constraint functions have the form
fm(®) ={(x,a,) —b,, andso Vf,(x)=a,,

where a! is the mth row of A. Since x* is feasible, KI must
hold. If none of the constraints are “active”, meaning f,,(x*) for
m =1,...,M and ax* lies in the interior of C, then it must be that
V f(x*) = 0, and K2-K4 hold with A = 0.

Suppose that there are R active constraints at a*; without loss of
generality, we will take these to be the first R:

filx) =0, folx*) =0, ..., frlx*) =0,
fR—I—l(w*) <0 g ey fM(CC*) < 0.
We start by taking Agy1 = Aro = - -+ = Ay = 0, which means K3

will hold. Suppose that there were no A > 0 such that

Vf()(x*) -+ )\1Vf1(33*) + -+ ARVfR(a:*) = 0. (3)

D
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With A" R x N consisting of the first R rows of A, and b’ € R”
as the first R entries in b, this means that there is no A" € R¥ such
that

AN = -V f(z"), XN>0.

By the Farkas lemma, this means that there is a d € R such that
A'd<0, (d,—Vf(x)) >0,
which means, since V f,,(x) = a,,,

(d, V fo(x")) <0
<d7 Vf1<$*)> S 0

(d,V fnla)) < 0.

This means that d is a descent direction for f,, and is not an ascent

direction for fi, ..., fr. Because the constraint functionals are affine,
if (d, V f,,(x*)) = 0 above, then f,,(x*+td) = f,,(x*) — this means
that moving in the direction d will not increase fi, ..., f,,. Since the

last M — R constraints are not active, we can move at least a small
amount in any direction so that they stay that way. This means that
there exists a ¢t > 0 such that

folx* +td) < f(x"),
but also maintains feasibility:
fo(x*4+td) <0, m=1,..., M.

This directly contradicts the assertion that a* is optimal, and so
ALy« -y Ar > 0 must exist such that (3) holds.

For general convex inequality constraints, there are various other
scenarios under which the KK'T' conditions are necessary; these are
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called constraint qualifications. We have already seen that
polygonal (affine) constraints qualify. Another set of constraint qual-
ifications are Slater’s condition;

Slater’s condition: There exists at least one strictly feasible
point; a @ such that none of the constraints are active:

file) <0, fol@) <0, -+, fulx) <0

Suppose that Slater’s condition holds for fi,..., fir, and let «*
be a solution to

minimize fy(x) subjectto f, <0, m=1,..., M.

reRN

Then there exists a A* such that x*, X\* obey the KKT conditions.

This is proved in much the same way as in the affine inequality case.
Suppose that x* is a solution, and that

f@) =0, folx®) =0, ..., fa(x") =0
fR+( ") < ooy Jul(a®) <0
We take A\piy = -+ = Ay = 0, and show that if there is not

A,..., Ap >0 such that

V fo(@ +Z>\ Vfn(z") =0, (4)

then there is a another feasible point with a smaller value of f;.

7

Georgia Tech ECE 8823a Notes by J. Romberg. Last updated 9:52, February 22, 2017



By the Farkas lemma, if there does not exist a Ay, ..., Ap > 0 such
that (4) holds, then there must be a w € RY such that

(u, Vfo(x*)) <0
<u7 Vfl(ill‘*» S 0
(Y fal@)) < 0.

Now let z be a strictly feasible point, f,,(z) < 0 for all m. We know
that

0> fm(z) > fm(w*)+<z_m*7 me($*)> = <Z—ZB*, vfm(w*» <0,

form=1,..., R, since then f,,(x*) = 0. So u is a descent direction
for fy, and z — x* is a descent direction for all all of the constraint
functionals f,,, m =1,..., R that are active.

We consider a convex combination of these two vectors
dy=(1-0)u+0(z—x).
We know that (dy, V f.(x*)) <Oforall0 <8 <1, m=1,...,R.

We also know that there is a 6 small enough so that dy is a descent
direction for fy; there exists 0 < €y < 1 such that

(d.,, V fo(x¥)) <O0.

Finally, we also know that we can move a small enough amount in
any direction and keep constraints fr,i, ..., far inactive. Thus there
is a t > 0 such that

folx" +td.,) < folx*), fulx*+td,) <0, m=1,..., M,

which directly contradicts the assertion that x* is optimal.
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It should be clear from the two arguments above that Slater’s condi-
tion can be refined — we only need a point which obeys f,,(z) < 0
for the f,, which are not affine. We now state this formally:

Suppose that fi, ..., fir are affine functionals, and fyp.q, ..., fur
are convex functional which are not affine. Suppose that Slater’s
condition holds for fii1,..., fur, and let * be a solution to

minimize fy(x) subject to f.(x) <0, m=1,... M.

reRN

Then there exists a A* such that x*, X\* obey the KKT conditions.

The above statement lets us extend the KK'T conditions to optimiza-
tion problems with linear equality constraints, which we now state.
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KKT (with equality constraints)
The KKT conditions for the optimization program

min fo(x) subject to f(x) <0, m=1,....M (5)
hy(x)=0, p=1,...,P

inx € RY, A€ RY, and v € RY are

h,(x) ., o p=1,...,P
>0, (K2)
Afm(@) =0, m=1,....,M, (K3
V fo(x) + Z AoV (@) + ) 1, Vh,(x) =0, (K4)

We call the A and v above Lagrange multipliers. Notice that
A is constrained to be positive, while v can be arbitrary. Also, if
the h, are affine, which they have to be for the program above to be
convex, then we can write the equality constraints

hy(x)=0, p=1,...,P as Ax=0b,
for some A : P x N and b € R”. Also, we can rewrite (K4) as

V folx +Z)\ Vix)+ ATv =0

If the f,, are convex and the h, affine, then the KK'T conditions
are sufficient for * to be the solution to the convex program (5).
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If Slater’s condition holds for the non-affine f,,, then they are also
necessary. Almost nothing changes in the proofs above — we could
simply separate an equality constraint of the form (x,a) = b into
(x,a) —b < 0and (x,—a) + b < 0. Then we can recombine the
result, taking nu = Ay — Ay, where A — 1 is the Lagrange multiplier
for (x,a) — b and A, is the same for (x, —a) + b.
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Technical Details: Proof of the Farkas Lemma

We prove the Farkas Lemma; if A is an M x N matrix and b € RM
is a given vector, then exactly one of the following two things is true:

1. there exists & > 0 such that Ax = b;
2. there exists v € R such that

A'v <0, and (b,v)>0.

It is clear that if the first condition holds, the second cannot, as
(b,v) = (x, A"v) for any x such that Az = b, and (z, A"v) <0
for any & > 0 and Alv <o.

It is more difficult to argue that if the first condition does not hold,
the second must. This ends up being a direct result of the separating
hyperplane theorem. Let C(A) be the (convex) cone generated by
the columns a4, ...,ay of A:

n=1

N
C(A):{’UGRM ; v:Zenan, 6, > 0, nzl,...,N}.

Then 1 above is clearly equivalent to b € C(A). Since C(A) is closed
and convex, and b is a single point, we know that if b ¢ C(A), then

C(A) and b are strongly separated by a hyperplane. That is, if
b & C(A) implies that there exists a v € RM such that

v'b>v'A forall XeC(A),
which is the same as saying

v'b> sup v' A =supv'Azx.
AEC(A) x>0
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We know that 0 € C(A), so we must have v'b > 0. The above
equation also gives a finite upper bound (namely whatever the actual
value of v'b is) on the function v Ax for all @ > 0. But this

means that A'v < 0, as otherwise we would have the following
contradiction. If there were some index n such that (A'v)[n] = € >
0, then with e,, > 0 as the unit vector

1, k=n,
e”[k]:{o k+#n’

we have

supv' Az > supv' A(ae,) = sup ae = o0,
x>0 a>0 a>0

which contradicts the existence of this upper bound.
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Theorem 3.1 (Kuhn-Tucker — no equality constraints) Let f, g1, -, gm : R" —
(—oc, +0o¢] be conver functions and let S C R™ be a convex set. Consider the convex

programming problem
(P) i_gg{f{m) g1(z) <0, gm(z) <0}

Let T be a feasible point of (P); denote by () the set of all i € {1,---,m} for which
gi(z) = 0.



Theorem 3.1 (Kuhn-Tucker — no equality constraints) Let f, g1, -, gm : R" —
(—o0, +ox] be convex functions and let S C R™ be a convex set. Consider the convex

programming problem
[P) ilég{f(m) : gl(m) < D: T 19?11(3:) < D}

Let T be a feasible point of (P); denote by I(x) the set of all v € {1,---,m} for which
gi(z) = 0.

(7) s an optimal solution of (P) if there exist vectors of multipliers u =
(1, ,um) € RT and 7 € R" such that the following three relationships hold:

u;9;(x) =0 fori=1,---,m (complementary slackness),

0 df(

=i
o

- Z u;0¢9;(z) + 7 (normal Lagrange inclusion),

:r‘f’(x —x) <0 forall z € S (obtuse angle property).



Theorem 3.1 (Kuhn-Tucker — no equality constraints) Let f, g1, -, gm : R" —
(—o0, +0¢| be convex functions and let S C R™ be a conver set. Consider the convex

programming problem
(P) igg{f(m) 1g1(z) <0, -, gm(z) < 0}

Let & be a feasible point of (P); denote by I(Z) the set of all i € {1,---,m} for which
9i(z) = 0.

(22) Conversely, if & is an optimal solution of (P) and if z € int dom fNN;e(z)int dom g;,
then there ewist multipliers uy € {0,1}, u € R, (up,u) # (0,0), and 1 € R™ such
that the complementary slackness relationship and obtuse angle property of part (i)
hold, as well as the following:

0 € udf(x Z u;0g;(z) + 71 (Lagrange inclusion).

iel(x



Theorem 2.9 (Moreau-Rockafellar) Let f,g: R" — (—o0, 400| be conver func-
tions. Then for every ro € R"

df (x9) + dg(xo) C I(f + g)(xo).

Moreover, suppose that int dom f Ndom g # 0. Then for every xqg € R™ also

If + g)(xo) C If(x0) + Ig(ao).



Theorem 2.10 Let f:R" — R be a conver function and let S  R" be a nonempty
convex set. Consider the optimization problem

(P) if f(z).

g”hen T € S is an optimal solution of (P) if and only if there exists a subgradient
£ € df(z) such that

E(z—2) >0 forallz c S. (1)



Here the normal case 1s said to occur when g = 1 and the abnormal case when
ug = 0.

Remark 3.2 (minimum principle) By Theorem 2.9, the normal Lagrange inclu-
ston in Theorem 3.1 implies

—ned(f+ Y uig)(z)
iel(x)
So by Theorem 2.10 and Remark 2.11 it follows that

T € argmin, | f(z E fu,ﬂ:;,r1 |(minimum principle).
iel(z

Likewise, under the additional condition dom f M Micyzint dom g; # 0, this mini-

mum principle implies the normal Lagrange inclusion by the converse parts of Theo-
rem 2.10/Remark 2.11 and Theorem 2.9.



Remark 3.3 (Slater’s constraint qualification) The following Slater constraint
qualification guarantees normality: Suppose that there exists ¥ € S such that g;(z) < 0
fori=1,---,m. Then in part (ii) of Theorem 3.1 we have the normal case ug = 1.

Indeed, suppose we had ug = 0. For ug = 0 instead of ug = 1 the proof of the
minimum principle in Remark 3.2 can be mimicked and gives

m

Z 2;9;(T) < Z u;gi(T).
i=1

i=1

Since (U1, -+, Um) # (0,---,0), this gives > " | 4;9;(T) < 0, in contradiction to com-
plementary slackness.
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0 df(

=i
o
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:r‘f’(x —x) <0 forall z € S (obtuse angle property).



Proor or THEOREM 3.1. Let us write I := I(z). (i) By Remark 3.2 the
minimum principle holds, 1.e., for any = € S we have

@)+ dgi(z) > £(7)

icl

(observe that )., 4;9;(Z) = 0 by complementary slackness). Hence, for any feasible
r € .S we have

flz) = fl2)+ ) wg(x) > f(2),
iel

by nonnegativity of the multipliers. Clearly, this proves optimality of z.



Theorem 2.17 (Dubovitskii-Milyutin) Let fi,---, f,, : R" — (—o0, +0¢] be con-
vex functions and let xo be a point in N int dom f;. Let f : R" — (—o0,+00] be
given by

f(z) == max fi(z)

1<<i<im

and let I(xo) be the (nonempty) set of all i € {1,---,m} for which fi(xo) = f(xp).
Then

Of(xo) = co Uicr(zy) Ofi(xo).
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iel(x



(77) Consider the auxiliary optimization problem

(P') nf ¢(z).

=t

where ¢(z) := max|f(z)— f(Z), maxi<;<m g:(x)]. Since Z is an optimal solution of ( P),
it 1s not hard to see that T 1s also an optimal solution of (P’') (observe that ¢(z) = 0

and that = € S is feasible if and only if max;<,-,, g;:(x) < 0). By Theorem 2.10

and Remark 2.11 there exists 17 in R™ such that n has the obtuse angle property and
—1n € 0o(x). By Theorem 2.17 this gives

—1 € 00(x) = co(Of(T) U U;c100:(T)).



—1 € 0¢(z) = co(If(z) U Uier0gi(z)).

Since subdifferentials are convex, we get the existence of (ug, &) € Ry x df(z) and
(ui, &) € Ry x dgi(z), 1 € I, such that ZE{D}UI u; = 1 and

- = Z u;i&;.

ie{0}pUT

In case uy = 0, we are done by setting u; := wu; for 2 € {0} U I and ; := 0 otherwise.
Observe that in this case (u, -+, ,) # (0,---,0) by > .., u; = 1. In case uy # 0,
we know that ug > 0, so we can set u; := u;/ug for « € {0} U and @; := 0 otherwise.
QED



Example 3.4 Consider the following optimization problem:

9
(P) minimize (xq — 1)2 + (z9 — 2)?
over all (z1,72) € R? such that
'I? — 19 = 0
T+ Top — 6 < 0
—z1+1 <



Example 3.4 Consider the following optimization problem:

9
(P) minimize (rq — 1)2 + (2o — 2)?

over all (z1,72) € R? such that

'33%—1'9
T1—|—T2—6
—r1+1

A T A

Since Slater’s constraint qualification clearly holds, we get that a feasible point (1, Z2)
1s optimal if and only if there exists (uy, ig, ug) € Ri such that

(0)= (a8 ) em (%) e (h) o () (3)

for some 7 := (71, 70)* with
_ _\ 2
7'(z—z) <0 for all z € R

and such that

(77 —73) = 0

'ﬁg(fﬂ—I—fg—ﬁ) =
'ﬁg(—fl—Fl) = 0



7' (z — ) <0 for all z € R?

and such that T} — Ty
Iy + Iy — 6
(77 —T3) = 0 —r1 +1

(T + 79 —6) = 0

us(—r;y+1) = 0

AT TA

Let us first deal with 77: observe that the above obtuse angle property forces 7; and
72 to be nonpositive, and z; > 0 even implies 7; = 0 for 7 = 1,2 (this can be seen as
a form of complementarity). Since z; > 1, this means 7; = 0. Also, zo = 0 stands

no chance, because it would mean 77 < 0. Hence, 57 = 0.



Let & be a feasible point of (P); denote by I(x) the set of alli € {1,---,m} for which
g9i(z) = 0.

no chance, because it would mean 77 < 0. Hence, 7 = 0. We now distinguish the
following possibilities for the set [ := I(x):

Case 1 (I =)): By complementary slackness, @y = s = 13 = 0, so the Lagrange
inclusion gives 71 = 9/4, 7o = 2, which violates the first constraint ((9/4)% £ 2).



2 zy < 0 iy (3 —Ty) = 0
T+ Ty— 6 < 'ﬂg(:fq—l—::"g—ﬁ] = 0
—r1+1 < ug(—71+1) = 0

Case 2 (I = {1}): By complementary slackness, #s = u3 = (. The Lagrange
imclusion gives ; = %(1 +ay)7L, To = 1y /2 + 2, so, since T = Ty, by definition of
I, we obtain the equation @; + 6u% + 94y = 49/8, which has @ = 1/2 as its only
solution. It follows then that = = (3/2,9/4).



At this stage we can already stop: Theorem 3.1(7) guarantees that, in fact, r =
(3/2,9/4)" 1s an optimal solution of (P). Moreover, since the objective function
(21, 19) — (11 — %)2 + (z9 — 2)? is strictly convex, it follows that any optimal solution
of (P) must be unique. So z = (3/2,9/4)" is the unique optimal solution of (P).



Corollary 3.5 (Kuhn-Tucker — general case) Let f, g1, -, gm : R" — (—00, +00]
be convexr functions, let S C R"™ be a convexr set. Also, let A be a p x n-matriz and
let b € RP. Define L := {z : Ax = b}. Consider the convex programming problem

(P) irélg{f(i“) :gl(ﬁf) < U: “‘!gm(m) < U:AI —b= U}

Let T be a feasible point of (P); denote by I(x) the set of alli € {1,---,m} for which
9:(z) = 0.



(z) * 1s an optimal solution of (P) if there exist vectors of multipliers u € R'",
v € RP and 7 € R™ such that the complementary slackness relationship and the obtuse
angle property hold just as in Theorem 3.1(2), as well as the following version of the
normal Lagrange inclusion:

0€df(z)+ Y @0gi(z)+A'D+7.
icl(x)

(i1) Conwversely, if T is an optimal solution of (P) and if both = € int dom f M
Nicrz)int dom g; and int SN L # 0, then there exist multipliers ug € {0,1}, u € RT,
(g, 1) #= (0,0), and v € RP, 7 € R™ such that the complementary slackness rela-

tionship and obtuse ang.-fe property of part (1) hold, as well as the following Lagrange
inclusion.

0 e ugdf(z —|—Zu T)+ A0+ 1.

icl(x)



PROOF. Observe that Oy (z) = im A'. Indeed, n € Oxp(x) 1s equivalent to
n'(r—z) <0 forall z € L, 1e., ton'(r—x) =0 for all x € R* with A(z —z) = 0.
But the latter states that n belongs to the bi-orthoplement of the linear subspace
im A, so it belongs to im A’ itself. This proves the observation. Let us note that the
above problem (P) is precisely the same problem as the one of Theorem 3.1, but with
S replaced by S’ := SN L. Thus, parts (i) and (i7) follow directly from Theorem 3.1,
but now 7 as in Theorem 3.1 has to be replaced by an element (say ') in dys.. From
Theorem 2.9 we know that

Ixs (Z) = Oxs(Z) + Oxr(T),

in view of the condition int SN L # (). Therefore, n’ can be decomposed as ' = 77+1.
with 77 € Oxs(z) (this amounts to the obtuse angle property, of course), and with
n € dxr(z). By the above there exists © € R™ with n = A'w and this finishes the
proof. QED

https://math.stackexchange.com/questions/1205388/is-the-
formula-textker-a-perp-textim-at-necessarily-true



https://math.stackexchange.com/questions/1205388/is-the-formula-textker-a-perp-textim-at-necessarily-true

Example 3.6 Let ¢1,---,c,, a1, -+, a, and b be positive real numbers. Consider the
following optimization problem:

n

. Ci
(P) minimize —
: xIr;
i=1
over all z = (z,---,z,)" € R (the strictly positive orthant) such that

n

Z a;r; = b.

i=1



Let us try to meet the sufficient conditions of Corollary 3.5(z). Thus, we must find a
feasible ¥ € R™ and multipliers v € R, 57 € R™ such that
0 ——z aq

0 —L a,,

=
=
-3



and such that the obtuse angle property holds for 77. To begin with the latter, since
we seek 7 in the open set S := R’ , the only 7 with the obtuse angle property is
i1 = 0. The above Lagrange inclusion gives ; = (c;/(va;))'/? for all i. To determine v,
which must certainly be positive, we use the constraint: b=, a;7; = > _,(aic;/7)"2,
which gives © = (3_,(a;c;)'/2/b)%. Thus, all conditions of Corollary 3.5(i) are seen to

hold: an optimal solution of (P) is z, given by

_ C; b
Li = n )
a; Zj:l a;Cj

and it is implicit in our derivation that this solution is unique (exercise).
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